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The flow induced by impulsively starting the inner cylinder in a Couette flow 
apparatus is investigated by using a nonlinear analysis. Explicit finite-difference 
approximations are used to solve the Navier-Stokes equations for axisymmetric 
flows. Random small perturbations are distributed initially and periodic bound- 
ary conditions are applied in the axial direction over a length which, in general, is 
chosen to be the critical wavelength observed experimentally. Simultaneous 
occurrence of Taylor vortices is obtained at supercritical Reynolds numbers. 
The development of streamlines, perturbation velocity components and the 
kinetic energy of the perturbations is examined in detail. Many salient features 
of the physical flow are observed in the numerical experiments. 

1. Introduction 
The stability of time-independent flow has been the subject of intensive study. 

Linear stability analysis has succeeded to a remarkable degree, and the results 
show that the small perturbations initially present are selectively amplified 
when the value of a suitable parameter such as the Reynolds number exceeds a 
certain limit. The critical value of the parameter, as well as the wavenumber 
of the perturbation which f i s t  grows, have been confirmed by well-planned ex- 
perimental investigations, 

For time-dependent flows, the situation is quite different. The experiments 
are usually more difficult to perform, and the theoretical analysis is hindered by 
the fact that there is no suitable definition of stability. The principle of exchange 
of stabilities so often applied in the time-independent flows, which reduces the 
linear stability equation to an eigenvalue problem, is no longer applicable in time- 
dependent flows. This is because the perturbation are growing (or decaying) in a 
basic flow field which is itself evolving in time. If one is certain that the growth 
of the perturbations, once started, will be much faster than the evolution of the 
basic flow, then a quasi-steady approach can be used. With this approach, the 
instantaneous velocity profile is analysed for stability. However, one is never 
sure a prior; of the applicability of this method since the history of the flow is 
not considered. Another approach to the stability problem is to treat it as an 
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initial-value problem in which the time evolution of the initial small random 
perturbations of a given wavelength is monitored by numerical integration. The 
growth or decay of the perturbation kinetic energy would indicate whether the 
flow is unstable or stable. 

Recently, Chen & Kirchner (1971) investigated the stability problem of time- 
dependent rotational Couette flow by two different approaches. The first is the 
treatment as an initial-value problem and the second is the quasi-steady ap- 
proach. The results show that the initial-value problem approach predicts critical 
wavelengths remarkably close to those found experimentally, and when the per- 
turbation kinetic energy has increased a thousandfold, the secondary flow 
pattern becomes clearly observable. The quasi-steady approach has been shown 
to be quite inadequate to  predict both the critical wavelength and the onset time, 
which is defined as the time when the secondary flow is first observed. 

With the advent of large digital computers, numerical experiments on the 
evolution of the secondary flow in a steady Couette flow have been performed 
by several investigators. Meyer (1 967) used the time-dependent numerical tech- 
nique to solve the Navier-Stokes equations for steady rotational Couette flow 
with a radius ratio 7 (of inner to outer cylinder radius) of +. The results for the 
critical Reynolds number for the onset of Taylor vortices were in good agreement 
with linear theory. He later extended the method to study the development of 
three-dimensional wavy vortex modes from either a basic laminar flow or a 
basic Taylor cell flow (Meyer 1969). Strawbridge & Hooper (1968) gave numerical 
solutions of the Navier-Stokes equations for axisymmetric flows, of which the 
Taylor vortex flow between infinite concentric cylinders was one of the examples. 
For a radius ratio of 4, they numerically determined the streamlines of the flow. 
On comparison with the known observed flow pattern, good qualitative agree- 
ment was obtained. The torque acting on the cylinder was also evaluated for 
Reynolds numbers less than I00 with good agreement with observed values. In  
the present study the calculations are extended to the case of a time-dependent 
basic Couette flow. 

I n  order to  obtain detailed information on the development of the secondary 
flow in a time-dependent rotational Couette flow, we have solved numerically 
the nonlinear equations governing the axisymmetric motion of a fluid confined 
within a concentric annulus infinite in axial extent. Calculations have been made 
for the growth of Taylor vortices as evidenced by the deflexions of streamlines, 
the perturbation velocity and of the kinetic energy of perturbations. The torques 
acting on the inner and the outer cylinders have been caloulated for one particular 
case in order to assess errors which may have been introduced during the numeri- 
cal calculations. 

2. Basic equations 
Consider a, cylindrical co-ordinate system (r,  8, z )  in which the z axis is aligned 

with the axis of concentric cylinders with radii R, and R,, R, > R,. Starting with 
the unsteady Navier-Stokes equations governing the axisymmetric motion 
within the annulus, eliminating the pressure terms, and writing the resulting 
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equations in terms of the perturbation vorticity 6 and the circulation function 
V, we obtain (Strawbridge & Hooper 1968) 

The vorticity 5 is defined as 
5 = T--1(U2 - w,) (3) 

and the circulation function V = rG. The subscripts denote partial differentia- 
tion. The radial, circumferential and axial components of the velocity are denoted 
by (u, TI, w) and time by t .  All quantities are dimensionless, the basic length being 
the radius R,, of the inner cylinder, basic velocity the surface speed R, Q, of the 
inner cylinder and basic time Q2-I. It is noted that, in the presentation of results, 
the time is reported in terms of 7, which is a dimensionless time normalized with 
respect to the diffusion time R2,lv. This is to conform with our earlier work. The 
Reynolds number R e  is defined in terms of the radius and the surface speed of the 
inner cylinder, R e  = R2, Ql/v,  where Y is the kinematic viscosity of the fluid. It is 
convenient to introduce the stream function $ in terms of the velocity com- 
ponents: 

The vorticity now becomes 
$z = ru, $r = -rw. (4) 

r25 = $zz - r-l$r + II.,. (5 )  

Equations ( 1 )  and (2) describe the evolution of vorticity and circulation function 
in time and ( 5 )  relates the vorticity to the stream function. The former two 
equations are parabolic and the last one is elliptic. 

The no-slip boundary condition is assumed at  all solid walls, whether they are 
stationary or moving with constant velocity, hence 

u ( l , z , t )  = w ( l , z , t )  = 0, V ( l , z , t )  = 1 ;  

u(7/-l,z, t )  = w(T/-l, 2 ,  t )  = V(q-l,z, t )  = 0; 

$(1 , z , t )  = $r ( l , z , t )  = $ z ( l , z , t )  = 0; 

$(?/-l, z, t )  = $AT1>  z,  t )  = $AT1, z, t )  = 0. 

and 

The vorticity c a t  the boundaries is calculated from ( 5 ) ,  hence at  the solid bound- 
aries we have 

and 

The initial condition is V (  1, z, 0) = 1. 
The infinite concentric cylinders are not totally enclosed by solid boundaries. 

The length L of the region chosen to be investigated is still arbitrary. Owing 
to the periodic occurrence of the Taylor vortices observed experimentally we have 
chosen an axial 1en.gth L which is the average of the critical lengths observed by 
Kirchner & Chen (1970) and Liu (1971). Periodic boundary conditions are applied 

6 ( l , z , t )  = $-?.r(l,z,t), 

q-2c(T1,  z ,  t )  = $rr(T1, z, t ) .  
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E 

FIGURE 1. The configuration 

1 J  

L R J  

and the grid system. 

with period L ;  it is required that all variables as well as their derivatives be peri- 
odic in L. 

The perturbation kinetic energy E,, per wavelength, is defined as follows: 

r(u2 + w2 + w2) dr dz ,  

and the torque per wavelength is defined as 

PIr = 2m2Lpr(v/r),, ( 7 )  

where p is the density and p is the dynamic viscosity of the fluid. 

3. Difference equations and computational procedure 
A rectangular grid system is constructed on the axial plane of the field of flow 

as shown in figure I. The derivatives of the equations developed in the previous 
section are approximated by finite differences, and then solved a t  discrete inter- 
vals of space and time. It is convenient to characterize the variables r ,z  and t 
by i , j and k ,  that is 

r =  i + ( i - i ) A r  ( i =  1 , 2 , 3  ,... ), 
x = (j- I ) A z  

t = kAt 
(j  = 1 ,2 ,3 ,  ...), 
( k =  1 , 2 , 3  ,... ). 

Here, Ar and Az are the spatial increments in the radial and axial directions, 
respectively, and At is the time increment. 
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Central-difference approximation is used for spatial derivatives and forward- 
difference approximation is used for time derivatives. The finite-difference forms 
of (1) and (2) are quite similar. Let Q be a general variable. The value of Q at  the 
grid point ( i , j )  and (k + 1)th time step is 

where 

I Qi, j+l + Qi, j-1- 2Qi, j + A Qi+l, j - Qi-1, j 
+ (W2 2ri(Ar) 

1 for Q = 6, 
A={:l, B = {  0 for Q = V .  

For the elliptic equation (5) ,  the method of successive iteration with an over- 
relaxation factor r9 is used. The (n + 1)th iterate is (Todd 1962, p. 392) 

+ (1 + Ar/2ri) ( A Z ) ~  $??; +  AT)^ ($? i+l + $$$Al) - rp (ArAz)2 6i,j]]. (9) 

A finite-difference equation is said to be stable and convergent if its solution 
remains bounded and converges to the solution of the corresponding differentia1 
equation as time approaches infinity and the spatial and time increments per 
calculation cycle tend to zero. In  both cases, the specific criterion is that, in the 
space or time interval, the magnitude of the change in any field variable must 
be small compared with the magnitude of the variable itself. However, decreases 
in mesh spacing require not only much more computer storage, but they also 
require decreases in the time interval per calculation cycle. Lax's equivalence 
theorem (Richtmyer & Morton 1967, p. 45) states that, for a given properly posed 
initial-value problem and a finite-difference approximation to it that satisfies the 
consistency condition, stability is the necessary and sufficient condition for 
convergence. That is, the stability implies convergence if the truncation error 
associated with the difference equation tends to zero as the spatial and time 
increments tend to zero. Using the method of stability analysis as suggested by 
Richtmyer & Morton (1967), the following criteria must be met: 

where 

and 

In the calculations the left-hand side of equation (10) is equated to 0-5. 

I] ulj = maximum value of 1 ui, I 
llwll = maximum value of I w ~ , ~ ~ .  

The convective terms u(aQ/ar) and w(aQ/az) in the governing equations are 
6 F L M  59 



82 D. C. S. Liu and C. P. Chen 

evaluated by using a forward or a backward space difference acoording to whether 
u, w < 0 or u, w > 0. From Taylor series expansion, 

It is seen that spurious diffusion terms have been introduced. In order to be 
sure that these diffusion terms have negligible contribution to final results, 
we must have 

iRelulAr, 4ReIwlAz < 1. (12) 

Torrance (1968) has shown that, if one starts with the conservation form of the 
governing equation and uses a first-order numerical scheme, false diffusion 
terms still arise. However, the final result gives better agreement with that using 
higher order numerical schemes. In  a natural convection problem, he has shown 
that when non-conservation equations are used there are fictitious sources or 
sinks in the flow field. As a result the heat flux-into the control volume is different 
from that out of the volume. However, the isotherms and streamlines obtained 
by either the conservation methods or non-conservation methods are qualita- 
tively the same. In  the subsequent calculations, the quantities in (12) are con- 
tinuously monitored and the times when these quantities exceed for all 
cases treated are noted. However, calculations for later times are still carried out 
with the belief that the resulting flow patterns are essentially correct. 

The calculations are initiated by assigning small random values of vorticity of 
order at  each internal grid point. These initial perturbations must, of course, 
satisfy the periodic boundary condition. Equation (9) is then used to calculate 
the stream function $c,j iteratively. The iterations are terminated when the 
maximum relative error of two successive iterates is within the specific limit, 
generally taken as Prom the values of $i,j, ui,j and wi,jare evaluated through 
(4) and the boundary vortices are calculated at  this time. A time step is then 
chosen, and the rotating inner boundary assumes its prescribed speed instan- 
taneously. Values of K, and Ci, are evaluated according to (8). With new values 
of the &i ,  the entire sequence of calculations is repeated and the solution is thus 
advanced in time. The kinetic energy of the perturbed flow is evaluated by Simp- 
son's rule at each time step when flow field is calculated. 

The entire procedure could have been initiated by assigning random distur- 
bances in the stream function $. With this procedure, however, there is no 
assurance that the initial perturbations in the velocity and vorticity are of uni- 
formly small order of magnitude because of the differentiation processes involved. 
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4. Results and discussion 
The numerical results are presented here for impulsively started circular 

Couette flow with a stationary outer cylinder. All calculations were made in 
double precision on an IBM 360-67 computer. A total of 18 cases with different 
combinations of Re and 7 have been calculated; they are listed in table 1. Results 
are presented in terms of the flow field, the distribution of perturbation velocities, 
the growth of the perturbation kinetic energy, and the torque acting on the 
cylinders. These are separately discussed below. 

4.1. Flow field 

Results are primarily shown by streamline plots obtained by linear interpolation 
between grid points by the use of an IBM 1130 computer together with a Cal 
Comp 1627 plotter. In  each figure, such as figure 2, several frames of streamline 
plots at  different times are shown. In  each frame, the vertical boundary on the 
left-hand side is the surface of the rotating inner cylinder and that on the right- 
hand side is the surface of the outer cylinder. The grid size used is shown along 
the inner wall and the bottom surface. The top and bottom surfaces are the peri- 
odic boundaries. Each frame consists of two wavelengths with the results re- 
peated. 

The sizes of the grids are determined by numerical experiments. It is found 
that with ten grid points in an axial wavelength good results of streamlines can 
be obtained within reasonably short computing time. The wavelengths, as was 
mentioned before, are adopted on the basis of the critical wavelengths observed 
experimentally for that particular Reynolds number. 

Figure 2 (case 8) is a typical picture showing the growth of the perturbation 
stream function with respect to time. The Reynolds number is 300 and 7 = Q. 
The first three frames show vertical streamlines, which means that the perturba- 
tion flow field consists of essentially axial velocities. These velocities, of course, 
are of very small magnitude. It is to be remarked that the values of the stream 
function are not the same for the streamlines in different frames. Their orders 
of magnitude are 10-4initially and increase by one to two orders of magnitude in 
the eyes of the vortices at  later times. The values of 9 for this and subsequent 
streamline plots are listed in Liu (1971). At 7 = 0.04, periodic radial motion can 
be seen at the inner boundary; the disturbances there are being amplified. 
At 7 = 0.05, vortices can be detected along the surface of the inner cylinder. 
At  7 = 0.10, which corresponds to 17.4s, it is found that the region close to the 
outer cylinder is still not aware of the secondary motion being generated near the 
inner cylinder. 

The effect of a vertical extent L of the region other than the critical wavelength 
is studied first. Meyer (1967) has found that a preferred wavelength can be 
selected when the axial length L is long enough to permit the growth of four 
Taylor vortices. The preferred wavelength is that which gives four equal cells. 
When the axial length is only long enough to permit the growth of two 
Taylor vortices, there is no preferred wavelength; the cells are always equal in 
size. In view of these results, we started our computation for Re = 300 and 
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r=O.OI 7 = 0.02 7=0.03 7 = 0.04 7 = 0-05 

T = 0.06 T = 0.07 7 =o.ox r = 0.09 r=0.10 

FIGURE 2. Onset of secondary flow at Re = 300, R x 2L = 2.0 x 1.4. 

7 = Q with L = 22,  2 being the average wavelength observed experimentally. 
Quite surprisingly, only two Taylor vortices developed. This is because our 
initial disturbances are completely random with periodicity imposed a t  the two 
ends. In  Meyer's case, however, the disturbances were distributed along a radius 
at the middle of the domain considered, thus introducing a degree of symmetry 
into the problem. He also has shown that the initial sinusoidal conditions 
influence the fluid flow configuration to a considerable degree. It becomes 
apparent that, with our initial conditions, only two vortices can be generated. 
We therefore focused our attention on L < 22.  It is our belief that the present 
set of completely random initial conditions approximates more closely to what 
happens in a physical experiment. The results are shown in figure 3 for L = 0.82, 
1.22 and 1.52 (cases 10, 11 and 12). It is found thaC, when the length assumed is 
less than one wavelength, the growth of the disturbances is very much delayed 
compared with the experimental observation. When the length assumed is equal 
to or greater than one wavelength, the growth of the disturbances is compatible 
with that observed. The point is further borne out by the kinetic energy calcula- 
tions discussed later. It is interesting to note that, when the axial length equals 
one critical wavelength, the Taylor cells are of equal size. Meyer (1967) used this 
fact as a criterion for critical wavelength selection for steady Couette flows, 
In  the present case, however, this does not offer a clear-cut selection of the critical 
wavelength. 

With the Reynolds number kept constant at  300, the effect of different radius 
ratios is then examined. Streamline plots for 7 = k, 2 and & (cases 14, 13 and 7) 
are compared with result for 7 = Q in figure 4 at selected time intervals. It is seen 
that the smaller the gap the earlier the vortex pattern is established. Although 
the difference between 7 = 5 and 4 is almost negligible, the difference between 
7 = & and & is quite noticeable. This may be attributed to the fact that, with 
the smaller gap, the basic velocity distribution is established earlier than in 
a wide-gap case. The effect of Reynolds number on the onset of secondary flow 
is examined by studying all 8 cases for 7 = 3. The streamline plots show that 
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7 = 0.04 7 = 0.06 7 =0.08 7 =0.10 7 = 0.02 

FIGURE 3. Time development of streamlines at  Re = 300, T,I = *. 
Effect of initially assumed periodic length. 

the initiation and growth of the secondary flow is similar for all Reynolds 
numbers. However the time of onset of the secondary flow become smaller 
when the Reynolds number is increased. If we define the onset time of the 
secondary flow as the time when the streamline near the inner cylinder exhibits 
periodic radial deflexions, then the agreement between the calculated and 
experimental values is quite good as is shown by table 2. 

A remark has to be made here about the initial disturbances which are used 
to initiate all the calculations of the flow field. The initial random small dis- 
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0 
/ I  

10 

8 
I /  
C 

?/={ ?=)  ? = $  7'4 

FIGURE 4. Effect of gap width on the onset of secondary flow at Re = 300. 

Time of onset of secondary flow 
, 

Streamline Experimental 
Re plots observation 

200 N 0.080 0.065-0.095 
300 N 0.050 0.050-0.060 
400 N 0.030 0*032-0*040 
500 N 0.030 0.022-0.028 
600 N 0.025 0.0 18-0.022 

TABLE 2 

turbances in the vorticity are generated by RANDUT. An odd integer is needed 
to start this subroutine; two different values, 1 and 999, are tried (cases 8 and 9) 
for the same Reynolds number 300 and 7 = Q. No difference can be detected from 
these results. The effect of the distribution of random disturbances is also studied 
for case 14 and case 15. The random disturbances are initially distributed 
throughout the entire region in case 14 whereas in case 15 the initial disturbances 
are confined to the left half (the inner half) of the region. Both results show a 
critical time around 7 = 0.05 and no significant difference in streamline values 
after 7 = 0.06. But the initial motion is more vigorous when the entire region is 
initially perturbed, case 14. 

The effect of the magnitude of the initial disturbances on the final results 
has also been studied. We have varied the order of magnitude of the initial dis- 

t An IBM subroutine from the IBM 360 Scientific Subroutine Package. 
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' a t i = 2  

0.94 x lo-' 

T =0.030 

0.22 x 10-3 

T = 0.055 

0.22 x 1 0 - 5  

T =0.001 

0.61 x 1 0 - 4  

0.59 x lo-* 

7 -0~080 

7 = 0.005 

0.11 x 10-3 

7 = 0.050 

0.53 x lo-'  

7 =0.100 

FIGURE 5. For legend see facing page. 

turbances from to No discernible difference has been detected either 
in the streamline patterns or in the growth of the perturbation kinetic energy. 
This is not surprising since the deflexion of the streamlines is proportional to U/W 

and the kinetic energy is normalized with respect to its initial value. For initial 
disturbances of magnitude lo-' or smaller, one is taxing the capabilities of the 
computer. For disturbances of magnitude or higher, one may encounter 
finite disturbance effects. 

4.2. Perturbation velocity distribution 

In  order fully to characterize the flow field, the radial and axial components of 
the perturbation velocity at  selected positions within the annulus are shown in 
figures 5 and 6. Figure 5 shows the radial velocity distributions and figure 6 
shows the axial velocity distributions. In  each figure, the graph on the upper left- 
hand cornePs shows the grid system used and the heavy line indicates the position 
where the velocity distribution is plotted. At each position, velocity distributions 



Time-dependent rotational Gouette $ow 89 

I at i=5 

0.20 x 10-6 

7 =0.030 

. 0 . 1 4 ~  1 0 ~ 5  

r =0,055, 

. 0.24 x l O l S  

7 = 0.001 

0.10 x 10-5 

7 = 0.045 

0.13 x 1013 

r =0,080 

0.14x 10-5 

7 =0.005 

0.20 x 10-5 

r = 0.050 

FIGURE 5. Radial perturbation velocity distribution a t  Re = 300, 7 = +. 
( a )  i = 2. ( b )  i = 5. 

at progressively later times are shown in sequence for T = 0.001, 0.005, 0.030, 
0~045,0~050,0~055,0~080 and 0.100. At each value of T, the velocity is normalized 
with respect to the maximum value, which is indicated on the plot. To provide an 
order of magnitude of the actual velocity involved, it is noted that a non-dimen- 
sional velocity of 0.01 corresponds to 0*024cm/s a t  Re = 300 with distilled 
water, and R, = 1.27 cm. The radial perturbation velocities are presented over 
an axial distance of two wavelengths whereas the axial perturbation velocities 
are presented over one wavelength. 

At T = 0 - O O i ,  the effect of the initial distribution of random perturbations still 
remains, as evidenced particularly by the rather jagged ZL distribution through- 
out the annulus as shown in figure 5 (u). However, by T = 0.005, the initial ran- 
domness has been smoothed out by viscous diffusion, and the magnitude of u 
decreases. The radial velocity next to the wall begins to grow at T = 0.030. This 
growth is reflected in the slight perturbation of the essentially vertical streamlines 
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FIGURE 6. For legend see facing page. 

as shown in figure 2,  and by 7 = 0.04, the effect of the increased radial velocity 
is clearly exhibited in the streamline plot. At positions successively further away 
from the inner cylinder, the time when the radial velocity starts to grow becomes 
progressively later as shown in figure 5 (b) .  At later times the u component shows 
almost exactly a sinusoidal form. If a finite Fourier series were used to represent 
the u distribution in two complete wavelenghhs, the magnitude of the odd 
harmonics would be much smaller than that of the even ones. This would indicate 
that a correct wavelengbh had been selected according to  a criterion advanced 
by Meyer (1967). 

The axial velocity distribution (figure 6) shows an initial up-and-down motion 
of the fluid. It is noted that the axial component of the velocity is about one or 
two orders of magnitude larger than the radial component. This is because the 
vertical boundaries of the inner and outer cylinders severely restrict radial motion 
whereas in the vertical direction, the boundary condition only insists that the 
velocities be the same a t  the top as a t  the bottom of the region of interest. It 
must be pointed out, however, that the physical magnitudes of these velocities 
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FIGURE 6. Axial perturbation velocity distribution at Re = 300, 
11 = 4. ( a ) j  = 2.  ( b ) j  = 5 .  

+ 7 = 0~080 + 
7 =0,055 t 

are still extremely small, of the order 2.4 x cm/s forOhe case cited. This initial 
vertical motion is slowly decaying owing to diffusion. At T = 0.045, the axial 
velocity along a line which passes through the eye of the vortex begins to grow 
as shown in figure 6 ( b )  (cf. figure 2 for position of j = 5 horizontal grid). At 
any position other than the centre of the vortex, the times when the axial 
velocities begin to grow occur later, as shown in figure 6(a).  At r = 0.10, all 
perceptible vertical motions are confined within the vortices, which extend 
to about 0.7 of the gap width (cf. figure 2). 

4.3. Kinetic energy of the perturbations 

Chen & Kirchner (197 I )  have computed the growth of the kinetic energy of the 
perturbation Ep using linear stability theory. They have shown that, by examin- 
ing the growth of Ep, the critical wavelength may be obtained. We have calculated 
E p  for cases shown in figures 3 and 4 and the results are shown in figure 7 .  In  
figure 7 (a)  , the evolution of ED, normalized with respect to its initial value, is 
shown for LIZ = 0.8, 1.0, 1.3 and 1.5 a t  Re = 300 and 7 = +. For all cases, the 
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FIGURE 7. Growth of the kinetic energy of the perturbations at Re = 300. (a )  Effect of 
initially assumed wavelength. 7 = +. 0 ,  L = 0.82; 0, L = 1.02; a, L = 1-32; 0, L = 1.52. 
( b )  Effect of gap width. 0 , ~  = 4; 0 , ~  = +; a, 7 = 4; 0 , ~  = $. 

perturbation kinetic energy decays initially owing to viscous damping. As energy 
is being fed from the basic flow, E, grows exponentially. Depending on the wave- 
lengths initially assumed, the growth is attained at an earlier or a later time. It is 
seen that significant delay in reaching the minimum value is shown for L = 0.82. 
For L equal to or larger than one wavelength, the behaviours of the perturbation 
energies are similar except that the L = 1-02 case shows a slightly faster growth 
rate. This result correlates well with the streamline plots shown in figure 3. 
We remark here that neither the energy growth nor the streamline pattern shows 
a clear-cut preference for a particular wavelength. This may explain the fact 
that, experimentally, the vortices are never quite of the same size. 

The effect of varying gap width is shown in figure 7 ( b ) .  The gap width of the 
annulus is varied from I to 4 while the rotational speed of the inner cylinder is 
kept the same. The rate of growth of E, is essentially constant for all cases. The 
smaller gap case gives a faster rate of decay owing to the restraining effect of the 
side walls and an earlier start of the secondary flow. This latter fact correlates 
well with the stream function map as shown in figure 4. With the radius ratio 
kept constant a t  7 = 8,  the time when the perturbation kinetic energy reaches 
a minimum is decreased when the Reynolds number is increased. This fact 
correlates well with the results obtained for the onset time by examining the 
streamline plots. 

Since the present nonlinear calculations are initiated by distributing random 
perturbations of extremely small magnitude, it had been anticipated at first 
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FIGURE 8. Comparison of linear and nonlinear results on the growth of the kinetic energy 
of the perturbations. Re = 300, 7 = +. 0, nonlinear, cos (2nz)/Z; 0,  linear; 0, nonlinear, 
random. 

that the present results would be similar to those obtained by Chen & Kirchner 
(1971) using the linearized theory. However, in the linear theory all disturbances 
are assumed to be sinusoidal whereas in the nonlinear problem they are only 
required to be periodic. Since the final secondary flow pattern is sinusoidal, it is 
then reasonable to expect that an initial disturbance which is sinusoidal would 
be most efficient in extracting energy from the basic flow. This is indeed the case 
as shown in figure 8, in which the results of linear and nonlinear calculations are 
compared for Re = 300 and 7 = Q. It is seen that ED as calculated by the linear 
theory decreases much more rapidly, reaches the minimum a t  an earlier time, 
and starts exponential growth much sooner than that calculated by the non- 
linear theory. The growth rates attained at later times as calculated by these 
two methods are essentially the same. When the initial disturbances for the non- 
linear case are assumed to be f ( r )  cos 2742, where f ( r )  is a random function of r ,  
the resulting Ep becomes very close to that of the linear theory. The difference 
in the initial decay period is probably due to the differences in the exact distribu- 
tion of the initial disturbances. The nonlinear calculation is probably a more 
realistic representation of the laboratory experiments. However, using the 
linearized theory, constant results can still be obtained. 
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FIGURE 9. Torque T on the inner and outer cylinders. Re = 6 0 0 , ~  = 4, 
R, = 1*27cm, R, = 2~54cm. 0 ,  inner cylinder; 0, outer cylinder. 

4.4. Torque calculation 

In order to assess the effect of the fictitious source terms in the finite-difference 
scheme, we have made a calculation of the time variation of the torque acting on 
the surfaces of both inner and outer cylinders for Re = 600 and 7 = 8. The results 
are shown in figure 9. The torque acting on the inner cylinder decreases initially 
in much the same way as for a rotating cylinder in an infinite fluid. When the 
presence of the outer cylinder is felt, the torque starts to increase. At this time, 
the torque on the outer cylinder is still negligible. When the disturbances reach 
the outer wall (T z 0.05)) the torque on the inner cylinder is at its maximum value 
and is beginning to decrease whereas the torque on the outer cylinder is starting 
to increase rapidly. At r = 0.2, the torques on the inner and outer cylinders are 
0.948 and 0.861 dyne cm/wavelength, respectively. The 10 yo discrepancy may 
be attributed to the spurious source terms. It is interesting to note that the experi- 
mental value of the torque obtained by Donnelly & Simon (1960) is 1.04 dyne 
cm/wavelength in the steady state. 

5. Summary 
In  the present investigation a nonlinear mathematical model of the viscous, 

time-dependent, rotating Couette flow with axisymmetric motion has been formu- 
lated and solved. The system of nonlinear partial differential equations is solved 
by numerical techniques using the explicit finite-difference approximations. 
Periodic boundary conditions are imposed in the axial direction over a length 
which is, for most cases, the average critical wavelength observed in the experi- 
mental investigation. Small random disturbances in the vorticity are distributed 
initially throughout the region of interest. The time evolution of the streamline 
plots reveals the simultaneous occurrence of Taylor vortices all along the inner 
cylinder. The time of onset of the secondary flow correlates well with experimental 
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observations. The kinetic energy of the perturbations first decays owing to viscous 
damping and then grows exponentially. Owing to the initial distribution of 
random disturbances, the perturbations grow a t  the later time than the linea,r 
theory indicates. However, when a sinusoidal initial disturbance is used, the 
growth of the perturbation kinetic energy becomes quite similar to that of the 
linear theory. Spurious source terms introduced by the finite-difference approxi- 
mations of the non-conservative form of the equations probably account for the 
I0 yo difference in the torque values calculated for the inner and outer cylinders. 

In  conclusion, we exhibit the results of physical and numerical experiments at 
a t  R = 3001- and T = 0.07 in figure 10 (plate 1). The numerical calculations are 
for 7 = g and the physical results are obtained with 7 = i. The left-hand borders 
of both the computer plot and the photograph represent the surface of the inner 
cylinder, which is rotating. For  he computer plot, the output is repeated nine 
times vertically. In  the physical experiment dyed fluid particles are initially 
evenly distributed along the inner cylinder. After the onset of the secondary 
flow, these particles are being swept out radially between counter-rotating 
vortices. These are indicated schematically in the figure. As the dye spreads out 
radially, they assume a disk-like shape surrounding the inner cylinder. The un- 
even sizes of the disks in the radial direction indicate that the secondary flow is not 
initiated at the same time all along the inner cylinder. Those disks which are 
initiated first exhibit some portions of the return flow. 

This research was supported by the National Science Foundation under 
Grants GK-2096 and GK-14275. 
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